Pascal Triangle is a triangle made of numbers. The first row (root) has only 1 number which is 1, the second row has 2 numbers which again are 1 and 1. The third row has 3 numbers, which is 1, 2, 1 and so on. Each number equals to the sum of two numbers at its shoulder. The numbers at edges of triangle will be 1.
The source code in C++ is given as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #include <iostream> using namespace std; const int N = 12; long getNum(int n, int r) { int i; long p = 1; for(i = 1; i <= r; i++) { p = p * (n - i + 1) / i; } return p; } void print() { int n, r, t, i; for(n = 0; n <= N; n++) { for(r = 0; r <= n; r++) { if(r == 0) { for(i = 0; i <= N - n; i++) { cout << " "; } } else { cout << " "; } cout.width(3); // three characters width cout << getNum(n, r); cout.width(1); } cout << endl; } } int main() { cout << "Pascal Triangle, http://HelloACM.com" << endl << endl; print(); return 0; } |
#include <iostream> using namespace std; const int N = 12; long getNum(int n, int r) { int i; long p = 1; for(i = 1; i <= r; i++) { p = p * (n - i + 1) / i; } return p; } void print() { int n, r, t, i; for(n = 0; n <= N; n++) { for(r = 0; r <= n; r++) { if(r == 0) { for(i = 0; i <= N - n; i++) { cout << " "; } } else { cout << " "; } cout.width(3); // three characters width cout << getNum(n, r); cout.width(1); } cout << endl; } } int main() { cout << "Pascal Triangle, http://HelloACM.com" << endl << endl; print(); return 0; }
The function getNum takes two parameters, n and r which correspond to the position in the triangle.
Another posts on Pascal Triangles: Compute the Nth Row of a Pascal’s Triangle using Dynamic Programming Algorithm and Coding Exercise – Pascal Triangle II – C++ and Python Solution
Pascal Triangle Implementations:
- Teaching Kids Programming – Pascal Triangle Algorithms and Applications
- Coding Exercise – Pascal Triangle II – C++ and Python Solution
- How to Print Pascal Triangle in C++ (with Source Code)
- Compute the Nth Row of a Pascal’s Triangle using Dynamic Programming Algorithm
- GoLang: Generate a Pascal Triangle
–EOF (The Ultimate Computing & Technology Blog) —
Last Post: Duplicate a MySQL table - Copy Table / Duplicate Database / PHP Script
Next Post: Loop Implementation at Windows Batch Programming